7.6曲線和方程(2)求曲線的方程
●四川省成都石室中學蔣富揚
教材《人教版全日制普通高中教科書(必修)第二冊(上)》
一、教材分析
1.教材背景
作為曲線內(nèi)容學習的開始,“曲線與方程”這一小節(jié)思想性較強,約需三課時,第一課時介紹曲線與方程的概念;第二課時講曲線方程的求法;第三課時側(cè)重對所求方程的檢驗.
本課為第二課時
主要內(nèi)容有:解析幾何與坐標法;求曲線方程的方法(直譯法)、步驟及例題探求.
2.本課地位和作用
承前啟后,數(shù)形結(jié)合
曲線和方程,既是直線與方程的自然延伸,又是圓錐曲線學習的必備,是后面平面曲線學習的理論基礎(chǔ),是解幾中承上啟下的關(guān)鍵章節(jié).
“曲線”與“方程”是點的軌跡的兩種表現(xiàn)形式.“曲線”是軌跡的幾何形式,“方程”是軌跡的代數(shù)形式;求曲線方程是用方程研究曲線的先導,是解析幾何所要解決的兩大類問題的首要問題.體現(xiàn)了坐標法的本質(zhì)——代數(shù)化處理幾何問題,是數(shù)形結(jié)合的典范.
后繼性、可探究性
求曲線方程實質(zhì)上就是求曲線上任意一點(x,y)橫縱坐標間的等量關(guān)系,但曲線軌跡常無法事先預知類型,通過多媒體演示可以生動展現(xiàn)運動變化特點,但如何獲得曲線的方程呢?通過創(chuàng)設(shè)情景,激發(fā)學生興趣,充分發(fā)揮其主體地位的作用,學習過程具有較強的探究性.
同時,本課內(nèi)容又為后面的軌跡探求提供方法的準備,并且以后還會繼續(xù)完善軌跡方程的求解方法.
數(shù)學建模與示范性作用
曲線的方程是解析幾何的核心.求曲線方程的過程類似于數(shù)學建模的過程,它貫穿于解析幾何的始終,通過本課例題與變式,要總結(jié)規(guī)律,掌握方法,為后面圓錐曲線等的軌跡探求提供示范.
數(shù)學的文化價值
解析幾何的發(fā)明是變量數(shù)學的第一個里程碑,也是近代數(shù)學崛起的兩大標志之一,是較為完整和典型的重大數(shù)學創(chuàng)新史例.解析幾何創(chuàng)始人特別是笛卡兒的事跡和精神——對科學真理和方法的追求、質(zhì)疑的科學精神等都是富有啟發(fā)性和激勵性的教育材料.可以根據(jù)學生實際情況,條件允許時指導學生課后收集相關(guān)資料,通過分析、整理,寫出研究報告.
3.學情分析
我所授課班級的學生數(shù)學基礎(chǔ)比較好,思維活躍,在剛剛學習了“曲線的方程和方程的曲線”后,學生對這種必須同時具備純粹性和完備性的概念有了初步的認識,對用代數(shù)方法研究幾何問題的科學性、準確性和優(yōu)越性等已有了初步了解,對具體(平面)圖形與方程間能否對應、怎樣對應的學習已經(jīng)有了自然的求知欲望.
二、目標分析
1.教學目標
知識技能目標
理解坐標法的作用及意義.
掌握求曲線方程的一般方法和步驟,能根據(jù)所給條件,選擇適當坐標系求曲線方程.
過程性目標
通過學生積極參與,親身經(jīng)歷曲線方程的獲得過程,體驗坐標法在處理幾何問題中的優(yōu)越性,滲透數(shù)形結(jié)合的數(shù)學思想.
通過自主探索、合作交流,學生歷經(jīng)從“特殊——一般——特殊”的認知模式,完善認知結(jié)構(gòu).
通過層層深入,培養(yǎng)學生發(fā)散思維的能力,深化對求曲線方程本質(zhì)的理解.
情感、態(tài)度與價值觀目標
通過合作學習,學生間、師生間的相互交流,感受探索的樂趣與成功的喜悅,體會數(shù)學的理性與嚴謹,逐步養(yǎng)成質(zhì)疑的科學精神.
展現(xiàn)人文數(shù)學精神,體現(xiàn)數(shù)學文化價值及其在在社會進步、人類文明發(fā)展中的重要作用.
2.教學重點和難點
重點:求曲線方程的方法、步驟
難點:幾何條件的代數(shù)化
依據(jù):求曲線方程是解幾研究的兩大類問題之一,既是重點也是難點,是高考解答題取材的源泉.主要包括兩種類型求曲線的方程:一是已知曲線形狀時常用待定系數(shù)法;二是動點軌跡方程探求,本課的重點主要是探索動點的曲線方程.
曲線與方程是貫穿平面解幾的知識,是解析幾何的核心.求曲線方程是幾何問題得以代數(shù)研究的先決,求曲線方程的過程類似數(shù)學建模的過程,是課堂上必須突破的難點.
三、教學方法及教材處理
1.教學方法:探究發(fā)現(xiàn)教學法.
遵循以學生為主體,教師為主導,發(fā)展為主旨的現(xiàn)代教育原則,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設(shè)置問題,通過學生主動探索、積極參與、共同交流與協(xié)作,在教師的引導和合作下,學生“跳一跳”就能摘得果實,于問題的分析和解決中實現(xiàn)知識的建構(gòu)和發(fā)展,通過不斷探究、發(fā)現(xiàn),讓學習過程成為心靈愉悅的主動認知過程,使師生的生命活力在課堂上得到充分的發(fā)揮.
2.學法指導
學生學法:互相討論、探索發(fā)現(xiàn)
由于學生在嘗試問題解決的過程中常會在新舊知識聯(lián)系、策略選擇、思想方法運用等方面遇到一定的困難,需要教師指導.作為學生活動的組織者、引導者、參與者,教師要幫助學生重溫與問題解決有關(guān)的舊知,給予學生思考的時間和表達的機會,共同對(解題)過程進行反思等,在師生(生生)互動中,給予學生啟發(fā)和鼓勵,在心理上、認知上予以幫助.
這樣,在學法上確立的教法,能幫助學生更好地獲得完整的認知結(jié)構(gòu),使學生思維、能力等得到和諧發(fā)展.
3.設(shè)計理念:
求曲線方程就是將曲線上點的幾何表示形式轉(zhuǎn)化為代數(shù)表示形式。在這轉(zhuǎn)化過程中,學生通過積極參與、勇于探索的學習方式,讓學生的學習過程成為教師指導下的再創(chuàng)造,這也正是建構(gòu)主義理論的本質(zhì)要求;遵循學生認知規(guī)律,尊重學生個體差異,立足教材,通過對例題的再創(chuàng)造,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學原則,讓不同層次的學生得到不同層度的發(fā)展;通過激發(fā)興趣,強調(diào)自主探索與合作交流,讓學生逐步地從學會走向會學,由被動走向主動,由課堂走向社會,為學生的終身學習和終身發(fā)展奠定良好的基礎(chǔ),也是當前新課程所追求的基本理念.
四、教學過程(教學設(shè)計)
根據(jù)本課教學內(nèi)容幾何特性外化的特點,抓住形成軌跡的動點具備的幾何條件,運用坐標化的手段及等價轉(zhuǎn)化與數(shù)形結(jié)合的思想方法,突破難點,突出重點.本課的教學設(shè)計思路是:
創(chuàng)設(shè)情景——從感性的軌跡(圖形)認識,到解決生活上的實例,激發(fā)學生的求知欲望,抓住學生迫切一試的認知心理,自然引入坐標法的意義及曲線方程的求法.
例題探求——例題一體現(xiàn)知識的承前啟后.通過例題一的呈現(xiàn),學生借助已有的知識經(jīng)驗,自主探求獲得問題的求解,在教師的引導下,讓學生感受求曲線方程的含義及求解步驟;例題二及變式解決建系難點,建系的開放性,對學生是一種挑戰(zhàn),也是一種創(chuàng)造;兩個例題由淺入深,循序漸進,體現(xiàn)因材施教.至此,學生已能初步了解求曲線方程的一般方法和步驟了.
歸納步驟——學生親身經(jīng)歷求曲線方程的過程,讓學生歸納(用自己的語言)、表述求解的步驟,體現(xiàn)從“特殊——一般”認知規(guī)律,逐步實現(xiàn)教學目標.
變式練習——通過對例題的變式,由學生求解、回答變式后的含義,深化對認知結(jié)構(gòu)的理解,初步體會數(shù)學的理性與嚴謹,逐步養(yǎng)成質(zhì)疑與反思的習慣.
反饋練習——利用學生探索而發(fā)展來的認知水平,運用獲得的知識解決情景創(chuàng)設(shè)中的實際問題,一方面可以考察學生運用所學數(shù)學知識解決實際問題的意識和能力;另一方面是學生思維的自然順應,自然釋放,是“一般——特殊”的過程.全面完成教學目標.
人教版高中數(shù)學《曲線和方程(2)求曲線的方程》說課教案.rar