99久久免费国产香蕉麻豆,欧美极品第一页,japanese熟妇与子乱视频,91香蕉国产线观看免费全集,久久青,黄色网站在线免费亚洲,国产区综合另类亚洲欧美

文武教師招聘網(wǎng)
首頁(yè) 浙江教師 福建教師 江蘇教師 廣東教師 江西教師 安徽教師 北京教師 上海教師 天津教師 湖南教師 湖北教師 河南教師
河北教師 海南教師 重慶教師 貴州教師 遼寧教師 吉林教師 山西教師 廣西教師 云南教師 陜西教師 甘肅教師 青海教師 四川教師
山東教師 內(nèi)蒙古教師 黑龍江教師 寧夏教師 新疆教師 西藏教師 教師面試 說(shuō)課稿 教案 考試大綱 教師招聘試題 特崗教師 教師資格考試
杭州教師  廣州教師  長(zhǎng)沙教師  南京教師  福州教師  南昌教師  教師考試大綱  教師資格大綱  政治資料  地理資料
您現(xiàn)在的位置:首頁(yè) >> 教師招聘試題 >> 數(shù)學(xué)教師招聘試題 >> 內(nèi)容

教師公務(wù)員編制招聘考試數(shù)字推理題最新答題技巧

時(shí)間:2012-12-18 14:35:37 點(diǎn)擊:

第一部分:數(shù)字推理題的解題技巧

按數(shù)字之間的關(guān)系,可將數(shù)字推理題分為以下十種類型:

1.和差關(guān)系。又分為等差、移動(dòng)求和或差兩種。

(1)等差關(guān)系。這種題屬于比較簡(jiǎn)單的,不經(jīng)練習(xí)也能在短時(shí)間內(nèi)做出。建議解這種題時(shí),用

口算。

12,20,30,42,()

127,112,97,82,()

3,4,7,12,(),28

(2)移動(dòng)求和或差。從第三項(xiàng)起,每一項(xiàng)都是前兩項(xiàng)之和或差,這種題初次做稍有難度,做多

了也就簡(jiǎn)單了。

1,2,3,5,(),13

A 9  B 11     C 8    D7

選C。1+2=3,2+3=5,3+5=8,5+8=13

2,5,7,(),19,31,50

A 12  B 13  C 10  D11

選A

0,1,1,2,4,7,13,()

A 22 B 23 C 24 D 25

選C。注意此題為前三項(xiàng)之和等于下一項(xiàng)。一般考試中不會(huì)變態(tài)到要你求前四項(xiàng)之和,所以個(gè)人感覺(jué)這屬于移動(dòng)求和或差中最難的。

5,3,2,1,1,()

A-3 B-2  C 0  D2

選C。

2.乘除關(guān)系。又分為等比、移動(dòng)求積或商兩種

(1)等比。從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比等于一個(gè)常數(shù)或一個(gè)等差數(shù)列。

8,12,18,27,(40.5)后項(xiàng)與前項(xiàng)之比為1.5。

6,6,9,18,45,(135)后項(xiàng)與前項(xiàng)之比為等差數(shù)列,分別為1,1.5,2,2.5,3

(2)移動(dòng)求積或商關(guān)系。從第三項(xiàng)起,每一項(xiàng)都是前兩項(xiàng)之積或商。

2,5,10,50, (500)

100,50,2,25,(2/25)

3,4,6,12,36,(216) 此題稍有難度,從第三項(xiàng)起,第項(xiàng)為前兩項(xiàng)之積除以2

1,7,8,57,(457)   后項(xiàng)為前兩項(xiàng)之積+1

3.平方關(guān)系

1,4,9,16,25,(36),49

66,83,102,123,(146)   8,9,10,11,12的平方后+2

4.立方關(guān)系

1,8,27,(81),125

3,10,29,(83),127    立方后+2

0,1,2,9,(730)     有難度,后項(xiàng)為前項(xiàng)的立方+1

5.分?jǐn)?shù)數(shù)列。一般這種數(shù)列出難題較少,關(guān)鍵是把分子和分母看作兩個(gè)不同的數(shù)列,有的還需進(jìn)

行簡(jiǎn)單的通分,則可得出答案

1/2  4/3  9/4  16/5  25/6  (36/7)  分子為等比,分母為等差

2/3  1/2  2/5  1/3 (1/4)       將1/2化為2/4,1/3化為2/6,可知

下一個(gè)為2/8

6.帶根號(hào)的數(shù)列。這種題難度一般也不大,掌握根號(hào)的簡(jiǎn)單運(yùn)算則可。限于計(jì)算機(jī)水平比較爛,

打不出根號(hào),無(wú)法列題。

7.質(zhì)數(shù)數(shù)列

2,3,5,(7),11

4,6,10,14,22,(26)  質(zhì)數(shù)數(shù)列除以2

20,22,25,30,37,(48) 后項(xiàng)與前項(xiàng)相減得質(zhì)數(shù)數(shù)列。

8.雙重?cái)?shù)列。又分為三種:

(1)每?jī)身?xiàng)為一組,如

1,3,3,9,5,15,7,(21) 第一與第二,第三與第四等每?jī)身?xiàng)后項(xiàng)與前項(xiàng)之比為3

2,5,7,10,9,12,10,(13)每?jī)身?xiàng)之差為3

1/7,14,1/21,42,1/36,72,1/52,() 兩項(xiàng)為一組,每組的后項(xiàng)等于前項(xiàng)倒數(shù)*2

(2)兩個(gè)數(shù)列相隔,其中一個(gè)數(shù)列可能無(wú)任何規(guī)律,但只要把握有規(guī)律變化的數(shù)列就可得出結(jié)果。

22,39,25,38,31,37,40,36,(52) 由兩個(gè)數(shù)列,22,25,31,40,()和39,38,37,36組成,相互隔開(kāi),均為等差。

34,36,35,35,(36),34,37,(33) 由兩個(gè)數(shù)列相隔而成,一個(gè)遞增,一個(gè)遞減

(3)數(shù)列中的數(shù)字帶小數(shù),其中整數(shù)部分為一個(gè)數(shù)列,小數(shù)部分為另一個(gè)數(shù)列。

2.01, 4.03,  8.04,  16.07,  (32.11)  整數(shù)部分為等比,小數(shù)部分為移動(dòng)求和數(shù)列。雙重?cái)?shù)列難題也較少。能看出是雙重?cái)?shù)列,題目一般已經(jīng)解出。特別是前兩種,當(dāng)數(shù)字的個(gè)數(shù)超過(guò)7個(gè)時(shí),為雙重?cái)?shù)列的可能性相當(dāng)大。

9.組合數(shù)列。

此種數(shù)列最難。前面8種數(shù)列,單獨(dú)出題幾乎沒(méi)有難題,也出不了難題,但8種數(shù)列關(guān)系兩兩組合,變態(tài)的甚至三種關(guān)系組合,就形成了比較難解的題目了。最常見(jiàn)的是和差關(guān)系與乘除關(guān)系組合、和差關(guān)系與平方立方關(guān)系組合。只有在熟悉前面所述8種關(guān)系的基礎(chǔ)上,才能較好較快地解決這類題。

1,1,3,7,17,41()

A 89 B 99 C 109 D 119

選B。此為移動(dòng)求和與乘除關(guān)系組合。第三項(xiàng)為第二項(xiàng)*2+第一項(xiàng)

65,35,17,3,()

A 1  B 2  C 0  D 4

選A。平方關(guān)系與和差關(guān)系組合,分別為8的平方+1,6的平方-1,4的平方+1,2的平方-1,下一個(gè)應(yīng)為0的平方+1=1

4,6,10,18,34,()

A 50  B 64  C 66  D 68

選C。各差關(guān)系與等比關(guān)系組合。依次相減,得2,4,8,16(),可推知下一個(gè)為32,32+34=66

6,15,35,77,()

A 106 B 117 C 136 D 163

選D。等差與等比組合。前項(xiàng)*2+3,5,7依次得后項(xiàng),得出下一個(gè)應(yīng)為77*2+9=163

2,8,24,64,()

A 160 B 512  C 124  D 164

選A。此題較復(fù)雜,冪數(shù)列與等差數(shù)列組合。2=1*2的1次方,8=2*2的平方,24=3*2的3次方,64=4*2的4次方,下一個(gè)則為5*2的5次方=160

0,6,24,60,120,()

A 186 B 210 C 220 D 226

選B。和差與立方關(guān)系組合。0=1的3次方-1,6=2的3次方-2,24=3的3次方-3,60=4的3次方-4,120=5的3次方-5。

1,4,8,14,24,42,()

A 76  B 66  C 64  D68

選A。兩個(gè)等差與一個(gè)等比數(shù)列組合

依次相減,得3,4,6,10,18,()

再相減,得1,2,4,8,(),此為等比數(shù)列,下一個(gè)為16,倒推可知選A。

10.其他數(shù)列。

2,6,12,20,()

A 40  B 32  C 30  D 28

選C。2=1*2,6=2*3,12=3*4,20=4*5,下一個(gè)為5*6=30

1,1,2,6,24,()

A 48 B 96 C 120 D 144

選C。后項(xiàng)=前項(xiàng)*遞增數(shù)列。1=1*1,2=1*2,6=2*3,24=6*4,下一個(gè)為120=24*5

1,4,8,13,16,20,()

A20  B 25  C 27  D28

選B。每三項(xiàng)為一重復(fù),依次相減得3,4,5。下個(gè)重復(fù)也為3,4,5,推知得25。

27,16,5,(),1/7

A 16  B 1  C 0  D 2

選B。依次為3的3次方,4的2次方,5的1次方,6的0次方,7的-1次方。

這些數(shù)列部分也屬于組合數(shù)列,但由于與前面所講的和差,乘除,平方等關(guān)系不同,故在此列為其他數(shù)列。這種數(shù)列一般難題也較多。

第三部分: 數(shù)字推理題的各種規(guī)律

一.題型:

□ 等差數(shù)列及其變式

【例題1】2,5,8,()

A 10 B 11 C 12 D 13

【解答】從上題的前3個(gè)數(shù)字可以看出這是一個(gè)典型的等差數(shù)列,即后面的數(shù)字與前面數(shù)字之間的差等于一個(gè)常數(shù)。題中第二個(gè)數(shù)字為5,第一個(gè)數(shù)字為2,兩者的差為3,由觀察得知第三個(gè)、第二個(gè)數(shù)字也滿足此規(guī)律,那么在此基礎(chǔ)上對(duì)未知的一項(xiàng)進(jìn)行推理,即8+3=11,第四項(xiàng)應(yīng)該是11,即答案為B。

【例題2】3,4,6,9,(),18

A 11 B 12 C 13 D 14

【解答】答案為C。這道題表面看起來(lái)沒(méi)有什么規(guī)律,但稍加改變處理,就成為一道非常容易的題目。順次將數(shù)列的后項(xiàng)與前項(xiàng)相減,得到的差構(gòu)成等差數(shù)列1,2,3,4,5,……。顯然,括號(hào)內(nèi)的數(shù)字應(yīng)填13。在這種題中,雖然相鄰兩項(xiàng)之差不是一個(gè)常數(shù),但這些數(shù)字之間有著很明顯的規(guī)律性,可以把它們稱為等差數(shù)列的變式。

□ 等比數(shù)列及其變式

【例題3】3,9,27,81()

A 243 B 342 C 433 D 135

【解答】答案為A。這也是一種最基本的排列方式,等比數(shù)列。其特點(diǎn)為相鄰兩個(gè)數(shù)字之間的商是一個(gè)常數(shù)。該題中后項(xiàng)與前項(xiàng)相除得數(shù)均為3,故括號(hào)內(nèi)的數(shù)字應(yīng)填243。

【例題4】8,8,12,24,60,()

A 90 B 120 C 180 D 240

【解答】答案為C。該題難度較大,可以視為等比數(shù)列的一個(gè)變形。題目中相鄰兩個(gè)數(shù)字之間后一項(xiàng)除以前一項(xiàng)得到的商并不是一個(gè)常數(shù),但它們是按照一定規(guī)律排列的;1,1.5,2,2.5,3,因此括號(hào)內(nèi)的數(shù)字應(yīng)為60×3=180。這種規(guī)律對(duì)于沒(méi)有類似實(shí)踐經(jīng)驗(yàn)的應(yīng)試者往往很難想到。我們?cè)谶@里作為例題專門加以強(qiáng)調(diào)。該題是1997年中央國(guó)家機(jī)關(guān)錄用大學(xué)畢業(yè)生考試的原題。

【例題5】8,14,26,50,()

A 76 B 98 C 100 D 104

【解答】答案為B。這也是一道等比數(shù)列的變式,前后兩項(xiàng)不是直接的比例關(guān)系,而是中間繞了一個(gè)彎,前一項(xiàng)的2倍減2之后得到后一項(xiàng)。故括號(hào)內(nèi)的數(shù)字應(yīng)為50×2-2=98。

□ 等差與等比混合式

【例題6】5,4,10,8,15,16,(),()

A 20,18 B 18,32 C 20,32 D 18,32

【解答】此題是一道典型的等差、等比數(shù)列的混合題。其中奇數(shù)項(xiàng)是以5為首項(xiàng)、等差為5的等差數(shù)列,偶數(shù)項(xiàng)是以4為首項(xiàng)、等比為2的等比數(shù)列。這樣一來(lái)答案就可以容易得知是C。這種題型的靈活度高,可以隨意地拆加或重新組合,可以說(shuō)是在等比和等差數(shù)列當(dāng)中的最有難度的一種題型。

□ 求和相加式與求差相減式

【例題7】34,35,69,104,()

A 138 B 139 C 173 D 179

【解答】答案為C。觀察數(shù)字的前三項(xiàng),發(fā)現(xiàn)有這樣一個(gè)規(guī)律,第一項(xiàng)與第二項(xiàng)相加等于第三項(xiàng),34+35=69,這種假想的規(guī)律迅速在下一個(gè)數(shù)字中進(jìn)行檢驗(yàn),35+69=104,得到了驗(yàn)證,說(shuō)明假設(shè)的規(guī)律正確,以此規(guī)律得到該題的正確答案為173。在數(shù)字推理測(cè)驗(yàn)中,前兩項(xiàng)或幾項(xiàng)的和等于后一項(xiàng)是數(shù)字排列的又一重要規(guī)律。

【例題8】5,3,2,1,1,()

A -3 B -2 C 0 D 2

【解答】這題與上題同屬一個(gè)類型,有點(diǎn)不同的是上題是相加形式的,而這題屬于相減形式,即第一項(xiàng)5與第二項(xiàng)3的差等于第三項(xiàng)2,第四項(xiàng)又是第二項(xiàng)和第三項(xiàng)之差……所以,第四項(xiàng)和第五項(xiàng)之差就是未知項(xiàng),即1-1=0,故答案為C。

□ 求積相乘式與求商相除式

【例題9】2,5,10,50,()

A 100 B 200 C 250 D 500

【解答】這是一道相乘形式的題,由觀察可知這個(gè)數(shù)列中的第三項(xiàng)10等于第一、第二項(xiàng)之積,第四項(xiàng)則是第二、第三兩項(xiàng)之積,可知未知項(xiàng)應(yīng)該是第三、第四項(xiàng)之積,故答案應(yīng)為D。

【例題10】100,50,2,25,()

A 1 B 3 C 2/25 D 2/5

【解答】這個(gè)數(shù)列則是相除形式的數(shù)列,即后一項(xiàng)是前兩項(xiàng)之比,所以未知項(xiàng)應(yīng)該是2/25,即選C。

□ 求平方數(shù)及其變式

【例題11】1,4,9,(),25,36

A 10 B 14 C 20 D 16

【解答】答案為D。這是一道比較簡(jiǎn)單的試題,直覺(jué)力強(qiáng)的考生馬上就可以作出這樣的反應(yīng),第一個(gè)數(shù)字是1的平方,第二個(gè)數(shù)字是2的平方,第三個(gè)數(shù)字是3的平方,第五和第六個(gè)數(shù)字分別是5、6的平方,所以第四個(gè)數(shù)字必定是4的平方。對(duì)于這類問(wèn)題,要想迅速作出反應(yīng),熟練掌握一些數(shù)字的平方得數(shù)是很有必要的。

【例題12】66,83,102,123,()

A 144 B 145 C 146 D 147

【解答】答案為C。這是一道平方型數(shù)列的變式,其規(guī)律是8,9,10,11,的平方后再加2,故括號(hào)內(nèi)的數(shù)字應(yīng)為12的平方再加2,得146。這種在平方數(shù)列基礎(chǔ)上加減乘除一個(gè)常數(shù)或有規(guī)律的數(shù)列,初看起來(lái)顯得理不出頭緒,不知從哪里下手,但只要把握住平方規(guī)律,問(wèn)題就可以劃繁為簡(jiǎn)了。

□ 求立方數(shù)及其變式

【例題13】1,8,27,()

A 36 B 64 C 72 D81

【解答】答案為B。各項(xiàng)分別是1,2,3,4的立方,故括號(hào)內(nèi)應(yīng)填的數(shù)字是64。

【例題14】0,6,24,60,120,()

A 186 B 210 C 220 D 226

【解答】答案為B。這也是一道比較有難度的題目,但如果你能想到它是立方型的變式,問(wèn)題也就解決了一半,至少找到了解決問(wèn)題的突破口,這道題的規(guī)律是:第一個(gè)數(shù)是1的立方減1,第二個(gè)數(shù)是2的立方減2,第三個(gè)數(shù)是3的立方減3,第四個(gè)數(shù)是4的立方減4,依此類推,空格處應(yīng)為6的立方減6,即210。

□ 雙重?cái)?shù)列

【例題15】257,178,259,173,261,168,263,()

A 275 B 279 C 164 D 163

【解答】答案為D。通過(guò)考察數(shù)字排列的特征,我們會(huì)發(fā)現(xiàn),第一個(gè)數(shù)較大,第二個(gè)數(shù)較小,第三個(gè)數(shù)較大,第四個(gè)數(shù)較小,……。也就是說(shuō),奇數(shù)項(xiàng)的都是大數(shù),而偶數(shù)項(xiàng)的都是小數(shù)?梢耘袛啵@是兩項(xiàng)數(shù)列交替排列在一起而形成的一種排列方式。在這類題目中,規(guī)律不能在鄰項(xiàng)之間尋找,而必須在隔項(xiàng)中尋找。我們可以看到,奇數(shù)項(xiàng)是257,259,261,263,是一種等差數(shù)列的排列方式。而偶數(shù)項(xiàng)是178,173,168,(),也是一個(gè)等差數(shù)列,所以括號(hào)中的數(shù)應(yīng)為168-5=163。順便說(shuō)一下,該題中的兩個(gè)數(shù)列都是以等差數(shù)列的規(guī)律排列,但也有一些題目中兩個(gè)數(shù)列是按不同規(guī)律排列的,不過(guò)題目的實(shí)質(zhì)沒(méi)有變化。

兩個(gè)數(shù)列交替排列在一列數(shù)字中,也是數(shù)字推理測(cè)驗(yàn)中一種較常見(jiàn)的形式。只有當(dāng)你把這一列數(shù)字判斷為多組數(shù)列交替排列在一起時(shí),才算找到了正確解答這道題的方向,你的成功就已經(jīng)80%了。

□ 簡(jiǎn)單有理化式 二、解題技巧

數(shù)字推理題的解題方法

數(shù)字推理題難度較大,但并非無(wú)規(guī)律可循,了解和掌握一定的方法和技巧,對(duì)解答數(shù)字推理問(wèn)題大有幫助。

1快速掃描已給出的幾個(gè)數(shù)字,仔細(xì)觀察和分析各數(shù)之間的關(guān)系,尤其是前三個(gè)數(shù)之間的關(guān)系,大膽提出假設(shè),并迅速將這種假設(shè)延伸到下面的數(shù),如果能得到驗(yàn)證,即說(shuō)明找出規(guī)律,問(wèn)題即迎刃而解;如果假設(shè)被否定,立即改變思考角度,提出另外一種假設(shè),直到找出規(guī)律為止。

2推導(dǎo)規(guī)律時(shí),往往需要簡(jiǎn)單計(jì)算,為節(jié)省時(shí)間,要盡量多用心算,少用筆算或不用筆算。

3空缺項(xiàng)在最后的,從前往后推導(dǎo)規(guī)律;空缺項(xiàng)在最前面的,則從后往前尋找規(guī)律;空缺項(xiàng)在中間的可以兩邊同時(shí)推導(dǎo)。

4若自己一時(shí)難以找出規(guī)律,可用常見(jiàn)的規(guī)律來(lái)“對(duì)號(hào)入座”,加以驗(yàn)證。常見(jiàn)的排列規(guī)律有:

(1)奇偶數(shù)規(guī)律:各個(gè)數(shù)都是奇數(shù)(單數(shù))或偶數(shù)(雙數(shù));

(2)等差:相鄰數(shù)之間的差值相等,整個(gè)數(shù)字序列依次遞增或遞減。

(3)等比:相鄰數(shù)之間的比值相等,整個(gè)數(shù)字序列依次遞增或遞減;

如:2 4 8 16 32 64()

這是一個(gè)“公比”為2(即相鄰數(shù)之間的比值為2)的等比數(shù)列,空缺項(xiàng)應(yīng)為128。

(4)二級(jí)等差:相鄰數(shù)之間的差或比構(gòu)成了一個(gè)等差數(shù)列;

如:4 2 2 3 6 15

相鄰數(shù)之間的比是一個(gè)等差數(shù)列,依次為:0.5、1、1.5、2、2.5。

(5)二級(jí)等比數(shù)列:相鄰數(shù)之間的差或比構(gòu)成一個(gè)等比數(shù)理;

如:0 1 3 7 15 31()

相鄰數(shù)之間的差是一個(gè)等比數(shù)列,依次為1、2、4、8、16,空缺項(xiàng)應(yīng)為63。

(6)加法規(guī)律:前兩個(gè)數(shù)之和等于第三個(gè)數(shù),如例題23;

(7)減法規(guī)律:前兩個(gè)數(shù)之差等于第三個(gè)數(shù);

如:5 3 2 1 1 0 1()

相鄰數(shù)之差等于第三個(gè)數(shù),空缺項(xiàng)應(yīng)為-1。

(8)乘法(除法)規(guī)律:前兩個(gè)數(shù)之乘積(或相除)等于第三個(gè)數(shù);

(9)完全平方數(shù):數(shù)列中蘊(yùn)含著一個(gè)完全平方數(shù)序列,或明顯、或隱含;

如:2 3 10 15 26 35()

1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15......空缺項(xiàng)應(yīng)為50。

(10)混合型規(guī)律:由以上基本規(guī)律組合而成,可以是二級(jí)、三級(jí)的基本規(guī)律,也可能是兩個(gè)規(guī)律的數(shù)列交叉組合成一個(gè)數(shù)列。

如:1 2 6 15 31()

相鄰數(shù)之間的差是完全平方序列,依次為1、4、9、16,空缺項(xiàng)應(yīng)為31+25=56。

4道最BT公務(wù)員考試數(shù)字推理題匯總

數(shù)字的整除特性

數(shù)的整除的特征

我們已學(xué)過(guò)奇數(shù)與偶數(shù),我們正是以能否被2整除來(lái)區(qū)分偶數(shù)與奇數(shù)的。因此,有下面的結(jié)論:末位數(shù)字為0、2、4、6、8的整數(shù)都能被2整除。偶數(shù)總可表為2k,奇數(shù)總可表為2k+1(其中k為整數(shù))。

2.末位數(shù)字為零的整數(shù)必被10整除。這種數(shù)總可表為10k(其中k為整數(shù))。

3.末位數(shù)字為0或5的整數(shù)必被5整除,可表為5k(k為整數(shù))。

4.末兩位數(shù)字組成的兩位數(shù)能被4(25)整除的整數(shù)必被4(25)整除。

如1996=1900+96,因?yàn)?00是4和25的倍數(shù),所以1900是4和25的倍數(shù),只要考察96是否4或25的倍數(shù)即可。

由于4|96

能被25整除的整數(shù),末兩位數(shù)只可能是00、25、50、75。能被4整除的整數(shù),末兩位數(shù)只可能是00,04,08,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,不可能是其它的數(shù)。

5.末三位數(shù)字組成的三位數(shù)能被8(125)整除的整數(shù)必能被8(125)整除。

由于1000=8×125,因此,1000的倍數(shù)當(dāng)然也是8和125的倍數(shù)。

如判斷765432是否能被8整除。

因?yàn)?65432=765000+432

顯然8|765000,故只要考察8是否整除432即可。由于432=8×54,即8|432,所以8|765432。

能被8整除的整數(shù),末三位只能是000,008,016,024,…984,992。

由于125×1=125,125×2=250,125×3=375;

125×4=500,125×5=625;125×6=750;

125×7=875;125×8=10000

故能被125整除的整數(shù),末三位數(shù)只能是000,125,250,375,500,625,750, 875。

6.各個(gè)數(shù)位上數(shù)字之和能被3(9)整除的整數(shù)必能被3(9)整除。

如478323是否能被3(9)整除?

由于478323=4×100000+7×10000+8×1000+3×100+2×10+3

=4×(99999+1)+7(9999+1)+8×(999+1)+3×(99+1)+2×(9+1)+3 =(4×99999+7×9999+8×999+3×99+2×9)+(4+7+8+3+2+3)

前一括號(hào)里的各項(xiàng)都是3(9)的倍數(shù),因此,判斷478323是否能被3(9)整除,只要考察第二括號(hào)的各數(shù)之和(4+7+8+3+2+3)能否被3(9)整除。而第二括號(hào)內(nèi)各數(shù)之和,恰好是原數(shù)478323各個(gè)數(shù)位上數(shù)字之和。

∵4+7+8+3+2+3=27是3(9)的倍數(shù),故知478323是3(9)的倍數(shù)。

在實(shí)際考察4+7+8+3+2+3是否被3(9)整除時(shí),總可將3(9)的倍數(shù)劃掉不予考慮。

即考慮被3整除時(shí),劃去7、2、3、3,只看4+8,考慮被9整除時(shí),由于7+2=9,故可直接劃去7、2,只考慮4+8+3+3即可。

如考察9876543被9除時(shí)是否整除,可以只考察數(shù)字和(9+8+7+6+5+4+3)是否被9整除,還可劃去9、5+4、6+3,即只考察8

如問(wèn)3是否整除9876543,則先可將9、6、3劃去,再考慮其他數(shù)位上數(shù)字之和。由于3|(8+7+5+4),故有3|9876543。

實(shí)際上,一個(gè)整數(shù)各個(gè)數(shù)位上數(shù)字之和被3(9)除所得的余數(shù),就是這個(gè)整數(shù)被3(9)除所得的余數(shù)。

7.一個(gè)整數(shù)的奇數(shù)位數(shù)字和與偶數(shù)位數(shù)字和的差如果是11的倍數(shù),那么這個(gè)整數(shù)也是11的倍數(shù)。(一個(gè)整數(shù)的個(gè)位、百位、萬(wàn)位、…稱為奇數(shù)位,十位、千位、百萬(wàn)位……稱為偶數(shù)位。)

如判斷42559能否被11整除。

42559=4×10000+2×1000+5×100+5×10+9

=4×(9999+1)+2×(1001-1)+5(99+1)

+5×(11-1)+9

=(4×9999+2×1001+5×99+5×11)+

(4-2+5-5+9)

=11×(4×909+2×91+5×9+5)+

(4-2+5-5+9)

前一部分顯然是11的倍數(shù)。因此判斷42559是否11的倍數(shù)只要看后一部分4-2+5-5+9是否為11的倍數(shù)。

而4-2+5-5+9=(4+5+9)-(2+5)恰為奇數(shù)位上數(shù)字之和減去偶數(shù)位上數(shù)字之和的差。

由于(4+5+9)-(2+5)=11是11的倍數(shù),故42559是11的倍數(shù)。

現(xiàn)在要判斷7295871是否為11的倍數(shù),只須直接計(jì)算(1+8+9+7)-(7+5+2)是否為11的倍數(shù)即可。由25-14=11知(1+8+9+7)-(7+5+2)是1的倍數(shù),故11|7295871。

上面所舉的例子,是奇數(shù)位數(shù)字和大于偶數(shù)位數(shù)字和的情形。如果奇數(shù)位數(shù)字和小于偶數(shù)位數(shù)字和(即我們平時(shí)認(rèn)為“不夠減”),那么該怎么辦呢?

如867493的奇數(shù)位數(shù)字和為3+4+6,而偶數(shù)位數(shù)字和為9+7+8。顯然3+4+6小于9+7+8,即13小于24。

遇到這種情況,可在13-24這種式子后面依次加上11,直至“夠減”為止。

由于13-24+11=0,恰為11的倍數(shù),所以知道867493必是11的倍數(shù)。

又如738292的奇數(shù)位數(shù)字和與偶數(shù)位數(shù)字和的差為

(2+2+3)-(9+8+7)=7-24

7-24+11+11=5(加了兩次11使“夠減”)。由于5不能被11整除,故可立即判斷738292不能被11整除。

實(shí)際上,一個(gè)整數(shù)被11除所得的余數(shù),即是這個(gè)整數(shù)的奇數(shù)位數(shù)字和與偶數(shù)位數(shù)字和的差被11除所得的余數(shù)(不夠減時(shí)依次加11直至夠減為止)。

同學(xué)們還會(huì)發(fā)現(xiàn):任何一個(gè)三位數(shù)連寫兩次組成的六位數(shù)一定能被11整除。

如186這個(gè)三位數(shù),連寫兩次成為六位數(shù)186186。由于這個(gè)六位數(shù)的奇數(shù)位數(shù)字和為6+1+8,偶數(shù)位數(shù)字和為8+6+1,它們的差恰好為零,故186186是11的倍數(shù)。

數(shù)位數(shù)字和為c+a+b,偶數(shù)位數(shù)字和為b+c+a,它們的差恰為零,

象這樣由三位數(shù)連寫兩次組成的六位數(shù)是否能被7整除呢?

如186186被7試除后商為26598,余數(shù)為零,即7|186186。能否不做186186÷7,而有較簡(jiǎn)單的判斷辦法呢?

由于186186=186000+186

=186×1000+186

=186×1001

而1001=7×11×13,所以186186一定能被7整除。

這就啟發(fā)我們考慮,由于7×11×13=1001,故若一個(gè)數(shù)被1001整除,則這個(gè)數(shù)必被7整除,也被11和13整除。

或?qū)⒁粋(gè)數(shù)分為兩部分的和或差,如果其中一部分為1001的倍數(shù),另一部分為7(11或13)的倍數(shù),那么原數(shù)也一定是7(11或13)的倍數(shù)。

如判斷2839704是否是7的倍數(shù)?

由于2839704=2839000+704

=2839×1000+704

=2839×1001-2839+704

=2839×1001-(2839-704)

∵2839-704=2135是7的倍數(shù),所以2839704也是7的倍數(shù);2135不是11(13)的倍數(shù),所以2839704也不是11(13)的倍數(shù)。

實(shí)際上,對(duì)于283904這樣一個(gè)七位數(shù),要判斷它是否為7(11或13)的倍數(shù),只需將它分為2839和704兩個(gè)數(shù),看它們的差是否被7(11或13)整除即可。

又如判斷42952是否被13整除,可將42952分為42和952兩個(gè)數(shù),只要看952-42=910是否被13整除即可。由于910=13×70,所以13|910,

作者:不詳 來(lái)源:網(wǎng)絡(luò)
相關(guān)文章
  • 文武教師招聘網(wǎng)(www.henchongshi.com) © 2012 版權(quán)所有 All Rights Reserved.
  • 站長(zhǎng)聯(lián)系QQ:799752985 浙ICP備11036874號(hào)-1
  • Powered by 文武教師招聘網(wǎng)